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ABSTRACT

In this paper we present a novel image analysis methodology for au-
tomatically distinguishing low and high grades of breast cancer from
digitized histopathology. A set of over 3,400 image features, includ-
ing textural and nuclear architecture based features, are extracted
from a database of 48 breast biopsy tissue studies (30 cancerous and
18 benign images). Spectral clustering is used to reduce the dimen-
sionality of the feature set. A support vector machine (SVM) classi-
fier is used (1) to distinguish between cancerous and non-cancerous
images, and (2) to distinguish between images containing low and
high grades of cancer. Classification is repeated using different sub-
sets of features to compare their performance. The system achieves
a 95.8% accuracy in distinguishing cancer from non-cancer using
texture-based characteristics (Gabor filter features), and 93.3% ac-
curacy in distinguishing high from low grades of cancer using archi-
tectural features. In addition, we investigate the underlying mani-
fold structure on which the different grades of breast cancer lie as
revealed through spectral clustering. The manifold shows a smooth
spatial transition from low to high grade breast cancer.

Index Terms— Histopathology, Breast cancer, Image analysis,
Automated grading

1. INTRODUCTION

Approximately 178,000 new cases of invasive breast cancer are di-
agnosed and approximately 41,000 women are lost to breast cancer
each year in the U.S. (source: American Cancer Society). Fortu-
nately, proper screening and diagnostic techniques dramatically in-
crease the survival rate of diagnosed women. The current screening
protocol consists of a mammography to identify suspicious regions
of the breast, followed by a tissue biopsy and analysis by a pathol-
ogist to determine presence and malignancy of cancer. The malig-
nancy of the disease is determined by examining the degree of tubule
formation, mitotic index, and nuclear pleomorphism in the tissue
and assigning a numeric grade from 1 (mostly normal) to 3 (mostly
abnormal). The Bloom-Richardson (BR) grade is calculated as the
sum of these three numbers and correlates well with disease progno-
sis [1]. However, it has been shown that there is variability among
pathologists when using the BR grading system, which can lead to
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suboptimal treatment [2]. Meyer, et al. [3], using the kappa agree-
ment score between seven pathologists, found that the BR grading
scheme is only moderately reproducible. Due to the importance of
histological grading in the treatment of breast cancer [4], an auto-
mated and quantifiable method of grading breast cancer is desired.
Use of computer-aided diagnosis (CAD) for breast mammography
has been shown to increase the sensitivity of lesion detection by ra-
diologists by as much as 21% [5].

In contrast to CAD for radiology, relatively little work has been
done in quantitative image analysis of breast histopathology using
hematoxylin and eosin stained tissue images. Weyn, et al. [6] used
wavelets and densiometric features to classify breast tissue nuclei as
belonging to high or low grade cancer with an accuracy of 61.52%.
Petushi, et al. [7] also found that quantitative histopathological im-
age features contain information that can be used to differentiate be-
tween grades of breast cancers. Axelrod, et al. [8] investigated the
use of texture and morphology of nuclei to distinguish between low,
intermediate, and high nuclear grades of cancer with an overall ac-
curacy of 65%. Tözeren, et al. [9] showed that texture features can
distinguish regions of interest on breast tissue histology slides.

We have previously developed a CAD methodology for auto-
mated Gleason grading of prostate cancer on digitized histopathol-
ogy [10]. In this work, we present a quantitative CAD system for
detection and grading of breast cancer from digital images of breast
tissue. The aim of this work is threefold: (1) to distinguish between
“cancer” and “non-cancer” images of breast cancer; (2) to distin-
guish between low and high BR grades of breast cancer, and (3) to
analyze the underlying structure of the nonlinear data extracted from
images of breast histopathology and to correlate it with breast cancer
biology.

An overview of our system is presented in Figure 1. Our system
calculates over 3,400 textural and architectural features from breast
tissue images, including Haralick textures, Gabor filtered images,
gray level statistical features, and graph-based features derived from
spatial arrangement of nuclei. This feature space is then reduced
using a spectral clustering (SC) algorithm called graph embedding
[11]. The motivations for using spectral clustering are twofold: (1)
to visualize the high-dimensional manifold of the data in a linear
low-dimensional space, and (2) to avoid the curse of dimensional-
ity, a phenomenon that decreases classification accuracy when the
number of dimensions greatly exceeds the number of classification
objects. By reducing the feature data to three dimensions, we can
plot the images as points in R

3 to visualize the high-dimensional
data in a low-dimensional space where object adjacencies are pre-
served. We can then determine if there is a relationship between
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those breast cancer cases which are geodesically adjacent in high-
dimensional space and the corresponding tumor biology. Following
spectral clustering, we use a support vector machine (SVM) clas-
sifier to first distinguish between “cancer” or “non-cancer” images,
and then to classify cancerous images as high or low grade cancer.
We repeat spectral clustering and classification using individual sub-
groups of image features to determine the most discriminating fea-
ture subgroups for each classification task. Our paper is organized
as follows. In Section 2 we describe the methodology of the current
work. Section 3 contains the results of our analysis, and in Section 4
we present our concluding remarks.

2. METHODS

2.1. System Overview
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Fig. 1. System overview.

An overview of our system is
presented in Figure 1. Glass
slides of hematoxylin and
eosin stained breast biopsy
tissue are scanned into a
computer at 40x optical mag-
nification. An expert pathol-
ogist labeled regions of tissue
within each image accord-
ing to the Bloom-Richardson
(BR) grading scheme [1]. A
total of 48 images of tissues
were used in this study, com-
prising 18 benign images and
30 cancerous images. Of the
cancer images, 21 were “low
grade” cancer (BR grades 5
or 6), and 9 were “high
grade” cancer (grades 7 or 8).

We denote an image R as R = (C, f), where C is a 2D grid of pix-
els c ∈ C and f(c) is a function which assigns a value to c. Each
histological image contains m nuclei, and the pixels corresponding
to the centroids of the nuclei are manually labeled. We denote these
centroid pixels as c1

n, c2

n, · · · , cm
n .

2.2. Feature Extraction

From each imageR, we extract a set of graph- and texture-based fea-
tures to capture the discriminating characteristics of the tissue pat-
terns in each image. A feature vector f is created for R where each
element of f is a distinct feature value. These values are calculated
as described below.

2.2.1. Textural Features

The proliferation of nuclei in cancerous tissue suggests that textu-
ral characteristics can help discriminate between different grades of
breast cancers [6]. The following features are extracted from each
of the three channels of an image (hue, saturation, intensity), using
three different window sizes (3x3, 5x5, and 7x7 pixels).
A. Grey Level Features - We calculate 15 gray level features from
R as described in [10]. The average, standard deviation, minimum-
to-maximum ratio, and mode over all c ∈ C are then calculated for
the values in the feature image to yield a total of 540 gray level fea-
ture values for R.
B. Haralick Features - Second-order co-occurrence texture features

are described by 16 Haralick features presented in [12]. We calcu-
late a co-occurrence matrixZ ∈ R

M×M for imageR, which is used
to generate 16 Haralick feature images. The average, standard devi-
ation, minimum-to-maximum ratio, and mode of the values in the
feature images are calculated to yield 576 Haralick texture feature
values for R.
C. Gabor Filter Features - Steerable Gabor filters respond to a va-
riety of textural differences in an image. A unique filter kernel G is
defined by an orientation parameter θ ∈ {0, π

8
, · · · , 7π

8
} and a scale

parameter s ∈ {0, 1, · · · , 7}. We construct 64 Gabor filtered images
by varying θ and s. The average, standard deviation, minimum-to-
maximum ratio, and mode over all c ∈ C are calculated for each
feature image to yield a total of 2,304 Gabor feature values for R.

2.2.2. Graph Features

The shape and arrangement of nuclei within a histological image
region is also related to the cancer progression, and this architecture
may be quantified using graph-based techniques [13].
A. Voronoi Diagram - The Voronoi diagram V [13] comprises
a set of polygons P = {P1, P2, · · · , Pm}. Any pixel c ∈ R is
included in polygon Pa if d(c, ca

n) = minj{||c − cj
n||} where

a, j ∈ {1, 2, · · · , m} and d(c, d) is the Euclidean distance between
any two pixels c, d ∈ R. We calculate the area, perimeter length,
and chord length of all P ∈ V, and the average, standard deviation,
minimum-to-maximum ratio, and disorder [13] are calculated over
all P, giving 12 feature values for R.
B. Delaunay Triangulation - The Delaunay graphD is constructed
such that any two unique nuclear centroids ca

n and cb
n, where

a, b ∈ {1, 2, · · · , m}, are connected by an edge Ea,b if Pa and
Pb share a side inV. We calculate the side lengths and areas for all
triangles in D, and take the average, standard deviation, minimum-
to-maximum ratio, and disorder of these to obtain 8 additional
feature values for R.
C. Minimum Spanning Tree - Given a connected, undirected
graph, a spanning tree S of that graph is a subgraph that connects
all vertices. A single graph can have many different S. Weights ωE

S

are assigned to each edge E in each S based on the length of E in
S. The sum of all weights ωE

S in each S is determined to give the
weight �ωS assigned to each S. The minimum spanning tree (MST)
denoted by S

′ has a weight �ω′
S less than or equal to �ωS for every

other spanning tree S. We calculate the average, standard deviation,
minimum-to-maximum ratio, and disorder of the branch lengths in
S
′ to obtain 4 additional features for R.
D. Nuclear Features - Nuclear density ΠD is computed as ΠD =
m
|R|
, where |R| is the cardinality of R. For each nuclear centroid

ca
n, N(μ, ca

n) is the set of pixels c ∈ R contained within a circle
with its center at ca

n and radius μ. We compute the number of
cj

n, j �= a, j, a ∈ {1, 2, · · · , m} which are in set N(μ, ca
n) for

μ ∈ {10, 20 · · · , 50}. We also compute the μ required to obtain
N(μ, ca

n) ∈ {3, 5, 7}. The average, standard deviation, and disorder
of these values for all cj

n in R is calculated to yield 24 additional
features for R.

Figure 2 illustrates these graphs for normal benign tissue (Figure
2 (a)-(d)), low-grade cancer (Figure 2 (e)-(h)), and high-grade cancer
(Figure 2 (i)-(l)).

2.3. Spectral Clustering

Spectral clustering (SC) algorithms reduce the dimensionality of a
data set from M to M ′ dimensions, where M ′ << M . We used
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Fig. 2. Example of the ((a), (e), (i)) Voronoi, ((b), (f), (j)) Delaunay, and ((c), (g), (k)) Minimum Spanning Tree graphs, as well an example
of a ((d), (h), (l)) Haralick texture image, calculated for ((a)-(d)) benign tissue, ((e)-(h)) low-grade cancer, and ((i)-(l)) high-grade cancer.

graph embedding [11], a nonlinear technique which seeks to find an
optimal projection of the data. We construct a confusion matrix Y to
describe the pairwise similarity between the database of images:

Y(p, q) = e
−||fp−fq|| ∈ R

N×N
, (1)

where fp and fq are the feature vectors computed for any two images
Rp and Rq , respectively, where p, q ∈ {1, 2, · · · ,N} and whereN

is the total number of images in the data set. The embedding vector
X is obtained from the maximization of the function:

EY(X ) = 2η
XT(B − Y)X

XTBX
, (2)

where B(p, p) =
�

q
Y(p, q) and η = |N| − 1. The M ′-

dimensional embedding space is defined by the eigenvectors corre-
sponding to the smallest M ′ eigenvalues of (B − Y)X = λBX .
For image R defined by feature vector f , the embedding X (R)
contains the coordinates of R in the embedding space and is given
as X (R) = [wz(R)|z ∈ {1, 2, · · · , M ′}], where wz(R) are the z

eigenvalues associated with X (R).

3. RESULTS AND DISCUSSION

In this work we are concerned with three aims: (1) distinguishing
between “cancer” and “non-cancer” images of breast tissue; (2) dis-
tinguishing between low and high BR grades of breast cancer, and

(3) analyzing the underlying structure of the nonlinear data extracted
from images of breast histopathology. For each classification task,
we determine which feature subgroup described in Section 2.2 is
most discriminating for each classification task. We divide the fea-
ture set into 10 groups as shown in the first column in Table 1. Fea-
tures are not exclusive to one subgroup, since “All Textural” features
include Gabor, Grey Level, and Haralick features, and “All Architec-
tural” features includes Voronoi, Delaunay, MST, and Nuclear fea-
tures. These subgroups are reduced with SC and used for classifica-
tion. For each classification task, a third of the dataset is randomly
selected for training, while all remaining images are used for testing.

3.1. Classifier Accuracy

SVM classification accuracies are given in Table 1. The highest ac-
curacy in distinguishing cancerous from non-cancerous images is
95.8%, obtained when using only Gabor filter features. The highest
classification accuracy obtained when distinguishing high from low
grade cancer images is 93.3%, obtained using all of the architectural
features together: Voronoi, Delaunay, MST, and nuclear features.

3.2. Spectral Clustering Analysis

The scatter plots in Figure 3 show the data in the low-dimensional
space obtained through spectral clustering. The axes of the plots
correspond to the three dominant eigenvectors found by SC. Fig-
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(a) (b) (c)

Fig. 3. Graph Embedding results for (a) cancerous (blue circles) vs. non-cancerous images (green squares), (b) high-grade (red up-triangles)
vs. low-grade images (black down-triangles), and (c) individual grades of images: Grade 5 (orange diamonds), Grade 6 (green left-triangles),
Grade 7 (blue stars), and Grade 8 (maroon right-arrows). Note that the manifold in (b) and (c) is the same; only the view and the labels on the
data have been changed. The manifold structure in (c) reveals a smooth transition in BR grade from low-grade (BR grade 5) to high-grade
(BR grade 8) cancer.

Feature Subtype Classification Task
Cancer vs. Benign Low vs. High Grade

All Features (3,468) 0.667 0.700
All Textural (3,420) 0.667 0.733
All Architectural (51) 0.771 0.933
Gabor (2,304) 0.958 0.700
Grey Level (540) 0.938 0.700
Haralick (576) 0.625 0.767
Voronoi (12) 0.792 0.900
Delaunay (8) 0.854 0.900
MST (4) 0.938 0.900
Nuclear (27) 0.729 0.900

Table 1. Classification accuracy using different feature subsets for
cancer vs. non-cancer images and high vs. low grade images.

ure 3 (a) shows cancerous images (blue circles) versus non-cancer
images (green squares). Figure 3 (b) shows high-grade cancer im-
ages (red up-triangles) versus low-grade cancer images (black down-
triangles). Black ellipses denote class clusters in both figures. Fig-
ure 3 (c) shows a rotated view of (b), with labels altered to show
BR grades of cancer: the orange diamonds are grade 5, green left-
triangles are grade 6, blue stars are grade 7, and maroon right-arrows
are grade 8. There is a transition from the low grade images on the
left of the plot through intermediate grades (6 and 7) in the mid-
dle, ending with high grade images on the right. This suggests that
the structure of the data reflects the biology of the images, and that
by analyzing this structure in a low-dimensional subspace, we can
appreciate the relationship between the underlying biology and the
image features that are calculated from the image.

4. CONCLUDING REMARKS

In this paper, we present an automated system for quantitative
histopathological analysis of breast tissue images. The main contri-
butions of this work are:

• A set of image features that can distinguish different grades
of breast cancer on digitized histopathology,

• A system capable of distinguishing between cancer and be-
nign images and between images of high and low grades of
cancer with a high degree of accuracy, and

• Use of spectral clustering to visualize the underlying biolog-
ical relationship between different breast cancer studies.

The results obtained from SC suggest that we can appreciate the un-
derlying manifold structure on which different grades of breast can-
cer lie. The manifold shows a smooth transition from low to inter-
mediate to high grade breast cancer, and with a densely populated
manifold, we can determine if there is a connection between an im-
age’s location on the high-dimensional manifold and the biological
grade of the cancer growth.
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